skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wong, Marina G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wissa, Aimy; Gutierrez_Soto, Mariantonieta; Mailen, Russell W (Ed.)
    Printed flexible electronics have received extensive attention due to their significant potential for advancing wearable technologies, such as for monitoring human physiological health and biomechanics. However, current manufacturing techniques (e.g., inkjet printing and screen printing) of these electronics are typically limited by high cost, lengthy fabrication times, and types of print materials. Thus, this study investigates a novel manufacturing technique, namely corona-enabled electrostatic printing (CEP), which leverages high voltage discharged in the air to attract feedstock material particles onto substrates. The CEP technique can potentially fabricate various functional materials in milliseconds, forming binder-free microstructures. This study focuses on optimizing the CEP technique to produce high-performance, flexible, piezoresistive strain sensors. Here, the strain sensors will be fabricated with carbon nanotubes (CNTs) using different discharge voltages. The effect of the discharge voltage (i.e., a critical fabrication parameter) on the sensing performance will be characterized via electromechanical testing. In addition, to better understand the sensing mechanism of the samples, finite element analysis will be performed to investigate the electromechanical response of the CEP-fabricated binder-free CNT networks. Here, computational material models will be established based on microstructures of the CNT networks, which will be acquired from experimental microscopic imaging. Overall, this study will fundamentally advance the CEP manufacturing process for flexible electronics. 
    more » « less